Zygmund regularity of Colombeau generalized functions and applications to differential equations with nonsmooth coefficients
نویسنده
چکیده
We introduce an intrinsic notion of Zygmund regularity for Colombeau algebras of generalized functions. In case of embedded distributions belonging to some Zygmund-Hölder space this is shown to be consistent. The definition is motivated by the well-known use of the wavelet transform as a tool in studying Hölder regularity. It is based on a simple mollifier-wavelet interplay which translates wavelet estimates into properties of regularizations. We investigate basic properties of the newly defined subspaces as well as their application to differential equations whose coefficients and initial data are generalized functions in some Zygmund class. Problems of this kind occur, for example, in global seismology where Earth’s properties of fractal nature have to be taken into account.
منابع مشابه
Hölder-Zygmund regularity in algebras of generalized functions
We introduce an intrinsic notion of Hölder-Zygmund regularity for Colombeau generalized functions. In case of embedded distributions belonging to some Zygmund-Hölder space this is shown to be consistent. The definition is motivated by the well-known use of Littlewood-Paley decomposition in characterizing Hölder-Zygmund regularity for distributions. It is based on a simple interplay of different...
متن کاملZygmund classes in algebras of generalized functions
We introduce an intrinsic notion of Zygmund regularity for Colombeau algebras of generalized functions. In case of embedded distributions belonging to some Zygmund-Hölder space this is shown to be consistent. The definition is motivated by the well-known use of the wavelet transform as a tool in studying Hölder-Zygmund regularity. It is based on a simple mollifier-wavelet interplay which transl...
متن کاملElliptic regularity and solvability for partial differential equations with Colombeau coefficients
The paper addresses questions of existence and regularity of solutions to linear partial differential equations whose coefficients are generalized functions or generalized constants in the sense of Colombeau. We introduce various new notions of ellipticity and hypoellipticity, study their interrelation, and give a number of new examples and counterexamples. Using the concept of G∞-regularity of...
متن کاملElliptic regularity and solvability for PDEs with Colombeau coefficients
The paper addresses questions of existence and regularity of solutions to linear partial differential equations whose coefficients are generalized functions or generalized constants in the sense of Colombeau. We introduce various new notions of ellipticity and hypoellipticity, study their interrelation, and give a number of new examples and counterexamples. Using the concept of G∞-regularity of...
متن کاملGeophysical modelling with Colombeau functions: Microlocal properties and Zygmund regularity
In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...
متن کامل